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Continuous Wearable Monitoring Analytics 
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BACKGROUND: Implantable cardiac sensors have shown promise in reducing rehospitalization for heart failure (HF), but the 
efficacy of noninvasive approaches has not been determined. The objective of this study was to determine the accuracy of 
noninvasive remote monitoring in predicting HF rehospitalization.

METHODS: The LINK-HF study (Multisensor Non-invasive Remote Monitoring for Prediction of Heart Failure 
Exacerbation) examined the performance of a personalized analytical platform using continuous data streams to predict 
rehospitalization after HF admission. Study subjects were monitored for up to 3 months using a disposable multisensor 
patch placed on the chest that recorded physiological data. Data were uploaded continuously via smartphone to a cloud 
analytics platform. Machine learning was used to design a prognostic algorithm to detect HF exacerbation. Clinical events 
were formally adjudicated.

RESULTS: One hundred subjects aged 68.4±10.2 years (98% male) were enrolled. After discharge, the analytical platform 
derived a personalized baseline model of expected physiological values. Differences between baseline model estimated vital 
signs and actual monitored values were used to trigger a clinical alert. There were 35 unplanned nontrauma hospitalization 
events, including 24 worsening HF events. The platform was able to detect precursors of hospitalization for HF exacerbation 
with 76% to 88% sensitivity and 85% specificity. Median time between initial alert and readmission was 6.5 (4.2–13.7) days.

CONCLUSIONS: Multivariate physiological telemetry from a wearable sensor can provide accurate early detection of impending 
rehospitalization with a predictive accuracy comparable to implanted devices. The clinical efficacy and generalizability of this 
low-cost noninvasive approach to rehospitalization mitigation should be further tested.

REGISTRATION: URL: https://www.clinicaltrials.gov. Unique Identifier: NCT03037710.
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Heart failure (HF) is a major public health problem 
affecting >23 million patients worldwide.1–3 Hos-
pitalization costs for HF represent 80% of costs 

attributed to HF care.4 Thus, accurate and timely detec-
tion of worsening HF could allow for interventions aimed 
at reducing the risk of HF admission.

Several such approaches have been tested. Tracking 
of daily weight, as recommended by current HF guide-
lines, did not lead to reduction of the risk of HF hos-
pitalization,5 most likely because the weight gain is a 
contemporaneous or lagging indicator rather than a lead-
ing event. Interventions based on intrathoracic impedance 
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monitoring also did not result in reduction of readmission 
risk.6,7 These results suggest that physiological parame-
ters other than weight or intrathoracic impedance in iso-
lation may be needed to detect HF decompensation in a 
timely manner. In fact, 28% reduction of rehospitalization 
rates has been shown with interventions based on pul-
monary artery hemodynamic monitoring.8,9 More recently, 
in the MultiSENSE study (Multisensor Chronic Evalua-
tion in Ambulatory HF Patients), an algorithm based on 
physiological data from sensors in the implantable car-
diac resynchronization therapy defibrillators, was shown 
to have 70% sensitivity in predicting the risk of HF hos-
pitalization or outpatient visit with intravenous therapies 
for worsening of HF.10

Whether the risk of impending HF exacerbation could 
be accurately predicted using physiological parameters 
obtained by noninvasive means remains to be further 
investigated. Although proof of concept for this approach 
has been described in the MUSIC study (Multi-Sensor 
Monitoring in Congestive Heart Failure),11 the investiga-
tion was limited by technical shortcomings of the moni-
toring device and data transmission capabilities at the 
time, which resulted in >40% subject drop-out. More 
recent technological advances, including sensor minia-
turization, improved battery life, and ubiquitous use of 

handheld devices, provide opportunities for more reli-
able continuous telemonitoring. This is further amplified 
by advances in data science and artificial intelligence.12 
Hence, we hypothesized that a machine learning analyt-
ics algorithm using continuous remote monitoring data 
from a wearable sensor will predict HF rehospitalization 
with ≥70% sensitivity at a specificity level of 85%.

METHODS
The data and information of the analytical methods that support 
the findings of this study are available from the corresponding 
author upon reasonable request.

The LINK-HF study (Multisensor Non-invasive Remote 
Monitoring for Prediction of Heart Failure Exacerbation) was 
a multicenter, observational study with the primary aim of 
determining the accuracy of machine learning analytics of a 
remote patient monitoring system in predicting HF readmis-
sion to the hospital. Secondary aims included the assessment 
of subject compliance with the study procedures.

Inclusion Criteria
Adult subjects (≥18 years) with a history of HF and New York 
Heart Association functional class II-IV symptoms who were 
hospitalized for acute HF exacerbation were eligible for study 
participation. Inclusion criteria allowed enrollment of subjects 
with both HF with reduced ejection fraction (left ventricular 
ejection fraction <50%) and with HF with preserved ejection 
fraction (left ventricular ejection fraction ≥50%). Exclusion 
criteria were presence of skin damage preventing wearing of 
study device and visual or cognitive impairment that would pre-
clude ability to comply with study procedures.

The study subjects were enrolled at Veterans Affairs medi-
cal centers in Salt Lake City, UT; Palo Alto, CA; Houston, TX; 
and Gainesville, FL. The study was approved by the Institutional 
review boards at all 4 institutions, and all subjects provided 
informed consent for study participation.

Remote Monitoring System
The study subjects were fitted with a wearable sensor (Vital 
Connect, San Jose CA) secured on their chest by an adhesive 

Nonstandard Abbreviations and Acronyms

HF heart failure
MCI multivariate change index
MultiSENSE  Multisensor Chronic Evaluation in 

Ambulatory HF Patients
MUSIC  Multi-Sensor Monitoring in Conges-

tive Heart Failure
ROC receiver operating characteristic
SBM similarity-based modeling

WHAT IS NEW?
• We demonstrate that machine learning analytics 

using data from a wearable sensor can accurately 
predict hospitalization for heart failure exacerbation.

• We show that through this approach an alert indi-
cating likely heart failure exacerbation can be gen-
erated at a median time of 6.5 days before the 
admission.

WHAT ARE THE CLINICAL IMPLICATIONS?
• The study shows that wearable sensors coupled 

with machine learning analytics have predictive 
accuracy comparable to implanted devices.

• The findings provide a basis for prospective testing 
of the clinical efficacy of this data-driven approach 
to improve clinical outcomes in heart failure.

Figure 1. Multisensor monitoring device consisting of a 
disposable sensor patch with a disposable battery  and a 
reusable sensor electronics module.
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surface. The sensor comprises of a disposable sensor patch 
with a disposable battery (7-day life) and a reusable sensor 
electronics module (Figure 1). The electronics module is acti-
vated by the battery when inserted into the disposable patch. 
The sensor has 2 electrodes facing the skin used for ECG 
detection and skin impedance measurement. A temperature 
sensor also faces the skin. A 3-axis accelerometer is located 
internally. The sensor collects continuous ECG waveform, con-
tinuous 3-axis accelerometry, skin impedance, skin tempera-
ture, and information on activity and posture. Data derived from 
the primary information include heart rate, heart rate variabil-
ity, arrhythmia burden, respiratory rate, gross activity, walking, 
sleep, body tilt, and body posture.

The sensor patch was paired via bluetooth with an android 
phone equipped with a conventional cellular data plan, and 
data from the sensors were continuously streamed to the 
phone (Figure 2). The sensor has on-board storage of up to 
10 hours in case the subject walks out of bluetooth range 
(≈20 feet). When back in range, stored data are offloaded to 
the phone assuring full data collection. Data collected on the 
phone were encrypted and uploaded through cellular con-
nectivity at configurable intervals to a cloud analytics platform 
(PhysIQ, Chicago, IL; Figure 2).

Machine Learning Analytics
The cloud-based analytics platform used a general machine 
learning method of similarity-based modeling (SBM), to analyze 
collected data. SBM models the behavior of complex systems 
(eg, aircraft engines, computer networks, or human physiology) 
by learning tandem patterns among system variables as they 
are periodically sampled together.13 Once patterns represen-
tative of system behavior are identified to create a dynamic 
baseline model, the platform switches over to surveillance 
mode, where interpolative estimates are calculated based on 
the learned patterns for comparison to ongoing monitored data.

Using data from a pilot study,14 we configured SBM to han-
dle data from the study sensor. We used a 1-minute trim-mean 
(10%) heart rate, respiratory rate, a cumulative gross activity, 
and posture as inputs to SBM. Atrial fibrillation, tachycardia, and 
bradycardia detection were used along with SBM. Based on 
the assumption that a subject is at a relatively stable point post-
discharge, a personalized baseline model of dynamic patterns 
of monitored vital signs was established for each subject within 
72 hours of discharge. After that, the personalized baseline 

model provided estimates of expected values to compare with 
the monitored physiological signals collected by the sensor. 
Vital sign measurements matching expected values indicated 
that the subject’s physiology was behaving similar to baseline 
model training, regardless of the subject’s activity (sedentary, 
walking, asleep, awake, etc). In this way, normal variation in the 
vital signs because of activities of daily living was effectively 
removed, leaving only differences between the learned dynamic 
behavior and actual monitored vital sign behavior.

The differences across vital signs were combined into a 
single index, the multivariate change index (MCI; range, −1 to 
1; <0 implies improving health, >0 implies worsening health), 
to represent the likelihood that the subject’s physiology was 
behaving differently than it did during baseline training. For 
unchanging vital sign behavior, the index is close to zero. The 
more a subject’s physiology changes for the worse, the higher 
the index value, indicative of possible worsening of HF. MCI 
was determined on a 1-minute basis commensurate with vital 
sign data rates input to the model.

Study Procedures
The study subjects were enrolled at the time of discharge from 
an HF exacerbation hospitalization and trained on how to acti-
vate a disposable patch by inserting the reusable electronics 
module and on how to pair the electronics module with the 
phone. The subjects were instructed to put on a new patch 
once the previous patch battery was depleted or when the 
patch adhesive started to wear off. The study participants were 
also issued a printed patient manual with the corresponding 
instructions; these instructions were also present in an elec-
tronic format in the corresponding app on the phone.

All study subjects were asked to wear the sensor 24 hours 
a day, for a minimum of 30 days, and up to 90 days post-dis-
charge. Subjects changed disposable patches on their own. 
The subjects were asked to continue routine care with their HF 
team. No constraints were placed on subjects’ activities.

Clinical End Point Definition
The clinical event of interest was hospital readmission after the 
index discharge from the HF exacerbation hospitalization. We 
examined (1) hospitalizations due to worsening HF (HF hospi-
talization) and (2) all unplanned, nontrauma related hospitaliza-
tions (unplanned nontrauma hospitalization). Additional events 
of interest were emergency department visits and mortality.

Figure 2. Data collected by the sensor are streamed to a phone and then encrypted and uploaded to a cloud analytics platform.
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All clinical events were adjudicated by the study principal 
investigator and the corresponding site principal investigator. 
Source documents were the basis of adjudication decisions. At 
the time of adjudication, the investigators remained blinded to 
study remote monitoring data collected by the sensor. Admission 
for HF was defined as a hospitalization where the subject had 
signs and symptoms of HF on admission and was treated for 
HF during admission with medications including diuretic therapy 
(either intravenous diuretics or augmentation of oral diuretics) or 
vasodilators, inotropic support or ultrafiltration for treatment of HF.

Predictive Algorithm
The MCI reflects whether there is a significant difference in 
the observed remote monitoring data compared with the data 
expected based on the training period personalized baseline. 
The 1-minute MCIs are converted to a daily average MCI. If 
the daily average MCI crosses a prespecified threshold, the 
machine learning platform triggers a clinical alert. (In this obser-
vational study, providers were not made aware of clinical alerts.)

We constructed receiver operating characteristic (ROC) 
curves for the events of HF hospitalization and unplanned 
nontrauma hospitalization by applying a moving discrimination 
threshold to daily MCI values and scoring resulting alerts for 
accuracy as described below. The threshold set at 85% speci-
ficity was of particular interest to allow comparison with previ-
ous studies, and sensitivity for predicting HF hospitalization and 
unplanned nontrauma hospitalization at the 85% specificity is 
presented. Of note, in clinical use, the threshold applied to daily 
MCI for clinical alerting could be adjusted to allow a different 
sensitivity or specificity, as desired based on the clinical situation.

To score accuracy of the analytical platform as correct or 
incorrect, it was necessary to determine a plausible time win-
dow before each hospitalization in which a clinical alert could 
reasonably be associated with the hospitalization event (posi-
tive window). If an alert occurred in the positive window, it was 
assessed as correct; if an alert occurred outside of a positive 
window (in the negative window), it was assessed as incorrect.

Negative window decisions were assessed daily as correct 
or incorrect. In contrast, detection of positive events was scored 
on an event-basis, such that multiple clinical alerts in a posi-
tive event window counted as one detection. Such an approach 
mirrors clinical workflow, as generally each decision in a nega-
tive window represents false alert activity imposed on clinicians, 
while true positive detections would result in clinical triage that 
could intercept the evolving condition such that subsequent 
detections are redundant.

We used 2 alternative methods for defining the size of the 
positive window: (1) a fixed positive window of 10 days before 
hospitalization and (2) an event-specific positive window, an 
interval defined post hoc for each hospitalization event indi-
vidually, based on contemporaneous evidence collected in the 
study, namely patient-reported symptoms, reported medication 
noncompliance, or self-evident data deviation from normal (eg, 
onset of rapid atrial fibrillation in the captured ECG). Event-
specific windows were determined before any performance 
analysis, and in the absence of specific evidence in the record, 
defaulted to a 10-day window.

Statistical Analysis
For retrospective performance, a true positive occurs when 
an alert is generated on any one or more days of the positive 
window of an event; a false negative occurs if all days in the 
positive window lack alerts. Detection lead time is taken from 
the first alert in the positive window. A false negative occurs 
when an alert occurs on a day not in a positive window of an 
event. Data are presented as mean ± SD, median (interquartile 
range) or frequency (percent), as appropriate. Separate ROC 
curves were constructed to demonstrate the analytical algo-
rithm accuracy in predicting HF hospitalizations and unplanned 
nontrauma hospitalizations using each of the 2 approaches 
to determining positive windows. Because a random alerting 
process would have multiple chances to detect an event, the 
random line in the ROC curves is higher than a simple diagonal; 
in our analysis, to be factually accurate, the random alerting 
process was given a number of chances equal to the number 
of days in the positive window up to and including the first day 
on which the predictive algorithm alerted.

To characterize prospective performance without reliance 
on any window definitions, we adapted a Kaplan-Meier analysis 
to explore time to HF hospitalization in 3 groups: (1) the entire 
study population, (2) an alert-free population—where time 0 
was time of study entry and subjects were censored at the time 
of the first alert, and (3) a population with an alert—where time 
0 was time of first alert. Log-rank test was used to compare 
time-to-hospitalization between those with and without an alert. 
Two-tailed tests were used in analyses. A P<0.05 was consid-
ered significant. Calculations were performed using SPSS 21 
software (Chicago, IL).

RESULTS
Baseline Characteristics and Completeness of 
Data Capture
A total of 100 study subjects were enrolled in the 
study between August 2015 and December 2016. The 
mean age was 68.4±10.2 years and 98% of patients 
were male. There were 74 (74%) subjects with HF with 
reduced ejection fraction and 26 (26%) with HF with 
preserved ejection fraction. Baseline subject characteris-
tics, including the comorbidity burden and medical ther-
apy at discharge, are listed in Table 1. Table 1 also shows 
baseline characteristics of patients with and without HF 
admission in study follow-up.

Compliance with the use of the sensor patch was high. Of 
the 100 subjects enrolled, 87 completed 30 days of moni-
toring (the study’s minimum monitoring period), 3 patients 
became ineligible for study continuation within the first 30 
days (eg, died or were admitted to nursing facility after a 
rehospitalization), and 10 were noncompliant or dropped out 
of the study. Of the 87 subjects, 74 subjects completed 90 
days of monitoring, and 13 subjects died or became ineli-
gible for study participation between days 30 and 90.

Considering all time during study enrollment as a 
reference, data successfully uploaded from the study 
sensor covered 74.1% of the time subjects participated 
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Table 1. Baseline Subject Characteristics for the Entire Cohort, and for Patients With and Without HF 
Admission During the Study

All, n=100
Without HF 

Hospitalization, n=75
With HF  

Hospitalization, n=25 P Value

Age, y 68.4±10.2 68.7±10.0 69.7±11.0 0.66

Sex (male), n (%) 98 (98) 74 (99) 24 (96) 0.44

Systolic BP, mm Hg 130±27 132±26 124±28 0.17

Diastolic BP, mm Hg 74±16 75±16 71±17 0.31

Heart rate, beats/min 82±16 83±16 78±16 0.25

Race, n (%) 0.95

 White 79 (79) 59 (79) 20 (80)  

 Black 15 (15) 11 (15) 4 (16)  

 Asian 4 (4) 3 (4) 1 (4)  

 Other 2 (2) 2 (3) 0 (0)  

BMI, kg/m2 29.9 (25.6–37.3) 33.2±9.1 28.4±6.7 0.03

NYHA, n (%) 0.46

 Class II 25 (25) 21 (28) 4 (16)  

 Class III 55 (55) 39 (52) 16 (64)  

 Class IV 20 (20) 15 (20) 5 (20)  

HF type, n (%) 0.07

 HFrEF 74 (74) 52 (69) 22 (88)  

 HFpEF 26 (26) 23 (31) 3 (12)  

Coronary artery disease, n (%) 74 (74) 52 (63) 22 (88) 0.07

 Myocardial infarction 19 (19) 11 (15) 8 (31) 0.08

 Coronary artery bypass 33 (33) 23 (31) 10 (40) 0.39

 Percutaneous coronary intervention 35 (35) 22 (29) 13 (52) 0.04

Ejection fraction 37±14% 37.8±14.1% 34.5±14.6% 0.32

Diabetes mellitus, n (%) 57 (57) 41 (55) 16 (64) 0.41

Atrial fibrillation, n (%) 49 (49) 35 (47) 14 (56) 0.42

Anemia, n (%) 31 (31) 21 (28) 10 (40) 0.26

COPD, n (%) 28 (28) 18 (24) 10 (40) 0.12

Tobacco use, n (%)

 Current 12 (12) 9 (12) 3 (12) 0.77

 Past 62 (62) 45 (61) 17 (68)  

Laboratory tests

 Na, mEq/L 137.6±4.2 137.6±4.0 137.5±4.6 0.86

 K, mEq/L 4.2±0.5 4.2±0.5 4.2±0.5 0.74

 BUN, mg/dL 28 (20–45) 27.5 (20–46.5) 30 (19.5–42) 0.74

 Creatinine, mg/dL 1.33 (1.10–1.71) 1.33 (1.10–1.70) 1.33 (1.20–1.84) 0.65

 BNP, pg/mL 754 (313–1409) 624 (288–1160) 941 (616–1971) 0.28

 NT-proBNP 1539 (977–4542) 1343 (819–2394) 4542 (3589–7109) 0.023

 Hematocrit, % 38.0±7.3 38.5±7.3 36.4±7.1 0.24

 Hemoglobin, g/dL 12.4±2.2 12.7±2.1 11.7±2.4 0.05

Medication, n (%)

 β-blockers 80 (80) 62 (83) 18 (72) 0.26

 ACE inhibitors/ARB/ARNi 59 (59) 44 (59) 15 (60) 0.91

 Loop diuretics 92 (92) 67 (89) 25 (100) 0.09

 Aldosterone antagonist 24 (24) 16 (21) 8 (32) 0.28

 Anticoagulation 47 (47) 35 (47) 12 (48) 0.91

 Nitrate 36 (36) 25 (33) 11 (44) 0.34

(Continued )
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in the study. After imposing data quality requirements, 
93.5% of uploaded data were analyzable (Figure I in the 
Data Supplement).

Clinical Events
There were 49 hospitalizations that took place during 
the 90 days of follow-up in 38 subjects at a median 
time from discharge to rehospitalization of 50.5 days. 
Of these, 27 were HF hospitalizations and 40 were 
unplanned nontrauma hospitalizations (Figure 3). Sen-
sor use compliance failure by the subject led to 5 events 
with insufficient data. These 5 events were excluded 
from the ROC analysis but are included in the time-to-
event analyses.

Fifty-two emergency department visits took place dur-
ing the 90 days of follow-up, of which 28 resulted in hos-
pitalization. Among the remaining 24 visits which did not 
result in hospitalization, only one was adjudicated to be 
for HF exacerbation, and therefore, no separate analysis 
was performed for emergency department visits.

Twelve subjects died during the study. Six deaths 
were adjudicated as sudden cardiac death, 2 were due 
to stroke, one due to HF, one due to sepsis, and in 2 
subjects cause of death could not be determined. None 

of the sudden cardiac deaths were preceded by an alert 
in the 10-day positive window.

Predictive Algorithm Performance
Clinical alert-to-hospitalization times, calculated as a 
number of days before hospitalization on which a posi-
tive detection occurs in the positive window for each 
event detected, are shown in Table 2. Event-specific 
window size and first alert within each event-specific 
positive window is shown in Figure II in the Data Sup-
plement. Depending on the positive window method 
used and the type of hospitalization, the median time 
between the clinical alert and hospital admission 
ranged between 6.5 (interquartile range, 4.2–13.7) and 
8.5 (interquartile range, 3.8–13.0) days, an interval that 
should permit for introduction of an intervention aimed 
at reversing the worsening.

ROC curves for the predictive analytics platform 
were calculated using both definitions of the positive 
window. Using the fixed positive window of 10 days, 
the ROC area under the curve was 0.86 for HF hos-
pitalizations and 0.80 for unplanned nontrauma hospi-
talizations (Figure 4). Using the event-specific positive 
window, the area under the curve was 0.89 for HF 

Figure 3. Study flowchart. 
N indicates number of hospitalizations; 
and S, number of subjects.

Device therapy, n (%)

 Pacemaker 15 (15) 11 (15) 4 (16) 0.99

 CRT 8 (8) 6 (8) 2 (8) 0.99

 ICD 25 (25) 15 (20) 10 (40) 0.05

ACE indicates angiotensin-converting enzyme; ARB, angiotensin II receptor blocker; ARNi, angiotensin receptor neprilysin inhibitor; BMI, body 
mass index; BNP, B-type natriuretic peptide; BP, blood pressure; BUN, blood urea nitrogen; COPD, chronic obstructive pulmonary disease; CRT, 
cardiac resynchronization therapy; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection 
fraction; ICD, implantable cardioverter-defibrillator; NT-proBNP, N-terminal pro-B-type natriuretic peptide; and NYHA, New York Heart Association.

Table 1. Continued

All, n=100
Without HF 

Hospitalization n=75
With HF  

Hospitalization n=25 P Value
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hospitalizations and 0.84 for unplanned nontrauma 
hospitalizations (Figure 5).

In Table 3, we show the analytical platform sensitivity 
at a specificity of ≈85% achieved at the discrimination 
threshold of 0.03. The specificity of 85% was selected as 
an example of where the clinical alert could be anchored 
for clinical use. This specificity would seem practical for 
clinical decision making and is also similar to the speci-
ficity reported by the MultiSENSE algorithm which is cur-
rently marketed for clinical use.10

A prospective examination of the predictive algorithm 
performance was done using the time-to-event Kaplan-
Meier analysis, which evaluates the change in hospitaliza-
tion rate once an alert has been generated regardless of 
positive or negative windows. Figure 6 shows time-to-HF 
admission (Figure 6A) and time-to-unplanned nontrauma 
admission (Figure 6B) for the whole study population and 

for subjects with and without a clinical alert. There is a sig-
nificant divergence in time-to-HF and time-to unplanned 
nontrauma hospitalization between those with and with-
out an alert (P=0.001 and P=0.008, respectively).

DISCUSSION
The LINK-HF study demonstrates that a personalized 
machine learning analytical platform supplied with nonin-
vasively captured remote patient monitoring data is able 
to accurately predict rehospitalization for HF. Depend-
ing on the approach to adjudicating pre-event positive 
windows, the platform was able to detect the risk of 
hospitalization for worsening of HF with 76.0% to 87.5% 
sensitivity and 85% specificity.

Furthermore, the clinical alerts preceded the hospital-
ization by a median time between 6.5 and 8.5 days, an 
interval that should provide sufficient time for an inter-
vention aimed at preventing hospitalization. A time-to-HF 
hospitalization analysis also demonstrated a significant 
divergence between the group of subjects with and with-
out a clinical alert.

Implantable Devices to Detect HF Exacerbation
Several previous studies evaluated the efficacy of implant-
able devices to predict worsening of HF and reduce the 
risk of hospitalization. Studies that evaluated only intra-
thoracic impedance had variable predictive accuracy, 

Table 2. Clinical Alert-to-Hospitalization Time by Positive 
Window Type and Hospitalization Type

Positive Window Methodology Mean SD, d Median (IQR), d

Ten-day positive window

 HF hospitalization 6.8±2.7 6.5 (4.5/9.5)

  Unplanned nontrauma hospitalization 7.2±2.6 8.5 (5.0/9.5)

Event-specific window

 HF hospitalization 10.4±8.7 6.5 (4.2/13.7)

  Unplanned nontrauma hospitalization 11.3±12.1 8.5 (3.8/13.0)

HF indicates heart failure; and IQR, interquartile range.

Figure 4. Receiver operating characteristic (ROC) curve for (A) heart failure (HF) hospitalizations and (B) unplanned nontrauma 
hospitalizations.
Fixed positive window of 10 days was used for calculation.
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ranging from 21% to 76%.15–17 Higher expectations 
were set for studies using a multisensor approach, but 
a study that used minute ventilation and physical activ-
ity sensors had only 34% sensitivity.18 More recently, in 
the MultiSENSE trial, the HeartLogic algorithm based on 
several variables collected from a cardiac resynchroniza-
tion therapy defibrillator had 70% sensitivity for detec-
tion of subsequent hospitalization or outpatient visit with 
IV therapies for worsening of HF.10 However, the long 
times between an alert and the hospitalization (median 
34 days [19.0–66.3 days]) called into question whether 
the HeartLogic algorithm is just risk-stratifying the popu-
lation for long-term acute event, rather than detecting 
an imminent event. The CardioMEMS device examined 
the utility of invasive pulmonary artery hemodynamic 
monitoring and resulted in a decrease of HF hospital-
izations.8,9 This device requires invasive implantation of a 
sensor in the pulmonary artery, and measurements need 
to be obtained by the patient.

Wearable Devices to Detect HF Exacerbation
Because not all HF patients have an indication for a 
pacemaker or a defibrillator, and because implantation 
of a dedicated device presents procedural risks, nonin-
vasive methods of monitoring may be more useful and 
cost-effective in patients temporarily at increased risk of 
HF-related hospitalization. The risk of hospitalization is 
significantly elevated in the first 90 days after hospital 
discharge, with the readmission rate being ≈30%. This 
time of increased risk, therefore, appears to be an oppor-
tune period for noninvasive monitoring aimed at identify-
ing patients with incipient HF decompensation.

One previous study examined the utility of a wear-
able monitoring device in a similar approach to ours. In 
the MUSIC study, physiological data recorded from a 
multisensor noninvasive skin-adherent monitoring sys-
tem had 63% sensitivity for detection of HF events.11 
However, compliance with the device use was negatively 
influenced by the device size. Advances in electronics in 
recent years have led to the development of smaller sen-
sors, which were used in the current remote monitoring 
system. The smaller sensor, which takes the form of an 
adhesive patch, minimizes interference with the patient’s 
daily activities. The use of a bluetooth enabled transfer of 
the data to a tablet and further data upload via a cellular 
service was also more intuitive to the study subjects than 
previous approaches to data transfer. This may explain 
why the current study achieved data capture for 74% of 
all monitorable hours across all patients (Figure I in the 
Data Supplement).

Figure 5. Receiver operating characteristic (ROC) curve for (A) heart failure (HF) hospitalizations and (B) unplanned nontrauma 
hospitalizations. Event-specific positive window approach was used for calculation.

Table 3. Analytical Platform Sensitivity and Specificity by 
Positive Window Type and Hospitalization Type

Positive Window Methodology Sensitivity Specificity

Ten-day positive window

 HF hospitalization 76.0% 84.8%

 Unplanned nontrauma hospitalization 68.6% 84.7%

Event-specific window

 HF hospitalization 87.5% 86.0%

 Unplanned nontrauma hospitalization 77.1% 86.0%

HF indicates heart failure.
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Novelty of the LINK-HF Approach
A significant novelty of our approach is the use of 
personalized machine learning to combine multiple 
physiological data streams into a model specific to 
each individual. This has 2 advantages. First, com-
bined analysis of several physiological parameters that 
reflect the complex pathophysiology associated with 
HF may explain superior sensitivity as compared to 
devices based on one parameter. Second, the analysis 
was facilitated by learning and comparing longitudinal 
continuous data streams to the normal dynamics of the 
individual’s vital signs, rather than to population-based 
norms, thus controlling for intersubject variability and 
identifying true anomalies. Furthermore, as illustrated 
by the ROC curves (Figures 4 and 5), the MCI analyti-
cal discrimination threshold can be adjusted based on 
the specific clinical need, trading sensitivity and speci-
ficity. We also feel the key advantage of the adhesive 
patch device is that it does not require invasive implan-
tation, which decreases the risk of procedure-related 
complications.

Study Limitations
The results of this study should be understood in the 
context of its limitations. First, we excluded from our 
analysis 5 events which were not preceded by sufficient 
data transfer from the study subjects. If these data were 
not missing at random, this could have introduced a bias. 
If these 5 events were to be included and considered 
failed detections due to the lack of a preceding alert, 
the resulting predictive platform sensitivity would be 
72.4% for HF hospitalization and 67.5% for unplanned 
nontrauma hospitalization, at the selected specificity of 
85%. We think compliance with the use of the sensor 
patch may further increase once patients may benefit 
from the monitoring, which was not the case in this study. 

We also think that data completeness and compliance 
will be further improved with the next-generation version 
of the patch currently available—a true band-aid-like dis-
posable system with integrated battery and electronics. 
Second, we did not have formal testing and validation 
sets. Although we used a predictive algorithm devel-
oped using data from previous pilot investigations,14 the 
length of the training period was configurable. A lon-
ger training period improves characterization of base-
line but can potentially reduce available test days and 
testable events. We anticipated using between 2 and 
3 days of training, but left this configurable parameter 
open to determination until we had substantial experi-
ence with data yield from enrolled subjects. In the end, 
we used a 3-day training period. Third, because of the 
study’s observational nature, we do not know whether 
the alerts generated by the monitoring system with its 
machine learning analytics are clinically actionable to 
decrease the risk of hospitalization. Fourth, because the 
study was done in mostly male population with HF with 
reduced ejection fraction, it is unclear whether similar 
results apply also to female population and patients with 
HF with preserved ejection fraction.

These results provide a rationale for the next step, a 
prospective study, currently in planning, which will ran-
domize patients to an active arm—remote monitoring with 
alerts communicated to the clinical team and clinicians 
following a standardized response algorithm, versus con-
trol—remote monitoring without alerts being generated. 
This study should provide important insights into the clini-
cal efficacy of wearable analytics in improving HF out-
comes. A critical step will be implementation into clinical 
workflow and development of an algorithmic treatment 
response to system clinical alerts.19 In some previous 
studies, inadequate response to clinical alerts may explain 
good predictive performance with no significant effect 
on the risk of rehospitalization. Importantly, not all HF-
rehospitalizations can or should be prevented. Indeed, as 

Figure 6. Time to (A) heart failure hospitalization and (B) unplanned nontrauma hospitalization.
Alert-free population: T0 is the time of study enrollment and subjects are censored at the time of first clinical alert. Population with an alert: T0 is 
the time of first alert. *Log-rank P for the comparison of population with alert vs alert-free population
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recently recognized, the Hospital Readmissions Reduc-
tion Program based on financial penalization of hospitals 
with higher rates of readmissions was associated with 
reduction of readmissions but increased mortality.20 We, 
therefore, estimate that up to one-half of the predicted 
HF hospitalizations can be prevented by a timely treat-
ment intervention. Considering the platform’s sensitivity, 
this provides an opportunity to reduce HF rehospitaliza-
tion by approximately one-third.

Conclusions
In this study, multivariate physiological telemetry from 
a wearable sensor provided accurate early detection of 
impending HF rehospitalization with a predictive accu-
racy comparable to implanted devices. The clinical effi-
cacy and generalizability of this low-cost noninvasive 
approach to rehospitalization mitigation should be tested.
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